
1

Early SYCL results from the Bristol
Performance Portability Study

Prof Simon McIntosh-Smith &
Dr Tom Deakin

HPC Research Group
University of Bristol

http://uob-hpc.github.io http://hpc.tomdeakin.com
https://uob-hpc.github.io/SimonMS/

http://uob-hpc.github.io/
http://hpc.tomdeakin.com/
https://uob-hpc.github.io/SimonMS/

2

Challenges at Exascale
• The coming generation of Exascale

supercomputers will contain a diverse range of
architectures at massive scale

• Perlmutter: AMD EYPC CPUs and NVIDIA GPUs (pre-
Exascale)

• Frontier: AMD EPYC CPUs and Radeon GPUs
• Aurora: Intel Xeon CPUs and Xe GPUs
• El Capitan: AMD EPYC CPUs and Radeon GPUs
• Fugaku: Fujitsu A64fx Arm CPUs

http://uob-hpc.github.io
http://hpc.tomdeakin.com

The Next Platform, Jan 13th 2020: “HPC in 2020: compute engine diversity gets real”
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-
diversity-gets-real/

https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

3

• CPUs have evolved to include lots of cores
and wide vector units

• 32 core CPUs been around for a while
(AMD Naples, Marvell ThunderX2)

• 48, 64 core CPUs have now arrived
(A64FX, Rome)

• Chiplet manufacturing processes likely to
be an important future trend

• Renewed competition in CPUs is crucial to
the health of the HPC ecosystem, and for
performance per dollar

• GPUs incorporating latest memory
technologies (HBM)

• So does A64FX CPUs (and so did KNL)

• GPUs have lots of cores and very wide
vector units

• Lightweight cores becoming more complex
(caches, specialised accelerators, etc)

• Vendor competition increasing (AMD
GPUs in Frontier and El Capitan, Intel GPUs
in Aurora, NVIDIA GPUs in pre-Exascale
Perlmutter)

http://uob-hpc.github.io
http://hpc.tomdeakin.com

Recent architectural trends

4
http://uob-hpc.github.io
http://hpc.tomdeakin.com

https://uob-hpc.github.io/publications/

5

What do we mean by “performance portability?”
“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures.”

Questions:

• Does it have to be a “good” fraction? YES! Ideally within 20% of
“best achievable”, i.e. of hand-optimized OpenMP, CUDA, …

• How wide is the range of target architectures? Depends on your
goal, but important to allow for future architectural developments

http://uob-hpc.github.io
http://hpc.tomdeakin.com

6

A systematic evaluation of Performance Portability
• Studying Performance Portability is hard!

• Must be rigorous about doing as well as possible across a wide range issues:
architectures, programming languages, algorithms, compilers, …

• It takes a lot of effort to do this well
• Motivated by our results so far, in Bristol we have initiated a wide-

ranging evaluation of Performance Portability:
• Across many codes
• Across many programming languages
• Across many architectures

• Our goal is to share these codes and results to further the fundamental
understanding of performance portability

http://uob-hpc.github.io
http://hpc.tomdeakin.com https://doi.org/10.1109/P3HPC49587.2019.00006

https://doi.org/10.1109/P3HPC49587.2019.00006

7
http://uob-hpc.github.io
http://hpc.tomdeakin.com

TeaLeaf

OpenMP Kokkos CUDA OpenACC

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing

317
191
254
348
314
793
79.1
1605
190
281
962

370
885
393
372
439
892

-
712
187
127
181

-
-
-
-
-
-
-

445
122
81.0
116

-
-

341
-
-
-
-

629
153
103
139

Lower is better CloverLeaf

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

376
250
376
327
457
1309
323

226
-
-
-

463
666
544
395
772
1452

-
1297
163
108
211

-

-
-
-
-
-
-
-

592
139
88.8
213

-

877
698
768
337

-
-
-
-

133
90.1
199

-

-
-
-
-
-
-
-

572
149
97.9
213
106

9737

Lower is better

Neutral

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

8.0
23.8
8.3
14.5
12.6
37.4

-
-
-
-
-

13.0
28.1
11.1
16.6
13.5
43.3

-
52.7
9.5
6.2
9.3
-

-
-
-
-
-
-
-

41.6
4.4
3.1
6.9
-

-
-
-
-
-
-
-

92.5
8.9
3.3
8.7
-

-
-
-
-
-
-
-

29.7
3.9
3.3
6.7
3.7

2784

Lower is better

MiniFMM

OpenMP Kokkos CUDA OpenACC

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

K20

P100

V100

Turing

8.7

11.4

23.6

13.1

21.9

116

56.7

5.0

3.1

3.2

12.9

20.2

38.5

20.5

30.6

127

28.2

4.7

4.4

4.2

-

-

-

-

-

-

17.3

3.5

2.5

2.3

-

-

-

-

-

-

-

4.3

3.8

3.2

Lower is better

https://doi.org/10.1109/P3HPC49587.2019.00006

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

80.2%
92.2%
72.8%
65.9%
85.3%
66.4%
81.3%
69.2%
75.5%
86.0%
85.7%

-

68.1%
62.1%
73.6%
62.7%
84.7%
57.3%

-
72.9%
76.1%
92.0%
90.0%

-

-
-
-
-
-
-
-

72.3%
75.4%
92.6%
90.2%

-

32.4%
90.7%
72.5%

-
-
-
-
-

75.3%
92.1%
90.1%

-

41.8%
58.4%

-
-
-
-
-

72.8%
75.3%
93.2%
89.9%
79.4%

Higher is better

BabelStream

https://doi.org/10.1109/P3HPC49587.2019.00006

8

Performance Portability of OpenMP and Kokkos

http://uob-hpc.github.io
http://hpc.tomdeakin.com

• Heatmap shows PP metric on
chosen platform subsets

• Rows indicate how a model fairs
across different applications

• OpenMP achieving best
performance on CPUs but
struggles on GPUs due to support

• Kokkos shows a small overhead on
CPUs
• PP metric tells us to expect the

abstraction of OpenMP/CUDA to
reduce performance by ~15-50%

BabelStreamTeaLeaf CloverLeaf Neutral MiniFMM

OpenMP CPU

Kokkos CPU

OpenMP GPU

Kokkos GPU

OpenMP all

Kokkos all

98.4%

83.0%

95.5%

99.5%

97.3%

88.5%

100.0%

49.8%

22.5%

64.3%

43.6%

54.4%

100.0%

60.7%

0.0%

85.7%

0.0%

68.2%

100.0%

77.6%

0.0%

51.1%

0.0%

65.0%

100.0%

66.1%

0.0%

60.4%

0.0%

63.9%

Mean Std. Dev.
99.7 0.6

67.5 11.9

23.6 37.0

72.2 17.7

28.2 38.5

68.0 11.2

Higher is better

• Final row here (Kokkos all) shows performance
portability is possible
• Mean and standard deviation shows we would

expect Kokkos to achieve 59-79% of best
application performance on average

https://doi.org/10.1109/P3HPC49587.2019.00006

https://doi.org/10.1109/P3HPC49587.2019.00006

9

SYCL

• SYCL is a single-source C++ parallel programming model for

heterogenous platforms from Khronos

• Open standard

• Modern C++

• Commercial support from Intel with oneAPI/DPC++ and Codeplay

• Open-source support growing to support wider set of platforms

• One possible option for programming CPUs, GPUs, etc. in a

performance portable way

http://uob-hpc.github.io
http://hpc.tomdeakin.com

10

Performance Portability of SYCL
• Paper at IWOCL explored performance

on Intel CPUs and GPUs from Intel,
AMD and NVIDIA.
• Comparisons with OpenCL, OpenMP,

CUDA and HIP

• Very promising results so far, but more
work to do in the HPC ecosystem

• Intel’s OpenCL runtime on CPUs has
known issues which hopefully will
improve as part of oneAPI

Xeon NUC NVIDIA AMD

60

70

80

90

62
.1

62
.7

89
.9

8080
.3

90
.2

79
.3

80
.3

80
.5

86
.1

78
.8

%
p
ea
k
m
em

or
y
b
an

d
w
id
th

SYCL OpenCL OpenMP CUDA HIP

BabelStream Triad

http://uob-hpc.github.io
http://hpc.tomdeakin.com https://doi.org/10.1145/3388333.3388643

https://doi.org/10.1145/3388333.3388643

11
http://uob-hpc.github.io
http://hpc.tomdeakin.com

Image from https://www.khronos.org/sycl/

12

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

P100
V100

Turing
Radeon VII

MI50
IrisPro Gen9

72.0%
82.5%
91.5%
74.5%
66.0%
79.6%
84.2%
75.4%
87.6%
32.3%
48.8%
71.2%
78.6%

57.9%
70.5%
64.3%
117.5%
70.9%
78.6%
82.5%
76.3%
92.3%
90.0%
78.1%
69.1%

X

24.3%
27.6%
65.7%
39.5%
46.5%

X
X

75.3%
92.2%
90.1%
9.9%

-
X

X
X
X
X
X
X
X

75.3%
93.0%
90.2%

X
X
X

34.8%
44.2%
58.5%
15.8%

X
32.5%

-
75.5%

X
89.9%
82.1%
76.0%
80.1%

35.5%
43.0%
53.7%
70.1%
59.0%
75.3%
26.5%
71.9%
86.0%
86.0%
80.8%

E
80.5%

BabelStream Triad array size=2**25
96.8 % complete (discounting impossible spaces)

• Showing architectural
efficiency
• Percentage of peak

memory bandwidth

• Latest and greatest
CPUs and GPUs from
all vendors

• (Near) complete
coverage for OpenMP,
Kokkos and SYCL!
• Much better coverage

than our previous
study

http://uob-hpc.github.io
http://hpc.tomdeakin.com

Latest BabelStream results

13

Performance portability of BabelStream
• Using Performance Portability metric (from Pennycook/Sewall/Lee), Kokkos

and SYCL still score 0 due to single missing result.

• Two approaches to work around this (both have similar effect) :
• Calculate metric excluding the missing result.

• Remove unsupported platforms.

http://uob-hpc.github.io
http://hpc.tomdeakin.com

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

P100
V100

Turing
Radeon VII

MI50
IrisPro Gen9

72.0%
82.5%
91.5%
74.5%
66.0%
79.6%
84.2%
75.4%
87.6%
32.3%
48.8%
71.2%
78.6%

57.9%
70.5%
64.3%

117.5%
70.9%
78.6%
82.5%
76.3%
92.3%
90.0%
78.1%
69.1%

X

24.3%
27.6%
65.7%
39.5%
46.5%

X
X

75.3%
92.2%
90.1%
9.9%

-
X

X
X
X
X
X
X
X

75.3%
93.0%
90.2%

X
X
X

34.8%
44.2%
58.5%
15.8%

X
32.5%

-
75.5%

X
89.9%
82.1%
76.0%
80.1%

35.5%
43.0%
53.7%
70.1%
59.0%
75.3%
26.5%
71.9%
86.0%
86.0%
80.8%

E
80.5%

BabelStream Triad array size=2**25
96.8 % complete (discounting impossible spaces)

PP metric OpenMP Kokkos SYCL
All platforms 67.4 0.0 0.0

Excluding missing data in each model 67.4 76.5 56.0

Excluding MI50 and Iris Pro 580 for all models 66.2 77.3 54.5

S.J. Pennycook, J.D. Sewall, V.W. Lee, A metric for performance portability, in Proceedings of the International Workshop on Performance Modelling, Benchmarking and Simulation, 2016. URL: http://arxiv.org/abs/1611.07409.

14

Performance portability of BabelStream on CPUs and GPUs
• Compute the metric for each model (where we have results) on CPUs only and GPUs

only.
• Kokkos still strong on both classes of device.
• OpenMP GPU support better but still room for improvement.
• SYCL support on CPUs needs improvement to resolve:

• NUMA and thread placement issues of OpenCL backends.
• Parallelism mapping of OpenMP backends.

http://uob-hpc.github.io
http://hpc.tomdeakin.com

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

P100
V100

Turing
Radeon VII

MI50
IrisPro Gen9

72.0%
82.5%
91.5%
74.5%
66.0%
79.6%
84.2%
75.4%
87.6%
32.3%
48.8%
71.2%
78.6%

57.9%
70.5%
64.3%

117.5%
70.9%
78.6%
82.5%
76.3%
92.3%
90.0%
78.1%
69.1%

X

24.3%
27.6%
65.7%
39.5%
46.5%

X
X

75.3%
92.2%
90.1%
9.9%

-
X

X
X
X
X
X
X
X

75.3%
93.0%
90.2%

X
X
X

34.8%
44.2%
58.5%
15.8%

X
32.5%

-
75.5%

X
89.9%
82.1%
76.0%
80.1%

35.5%
43.0%
53.7%
70.1%
59.0%
75.3%
26.5%
71.9%
86.0%
86.0%
80.8%

E
80.5%

BabelStream Triad array size=2**25
96.8 % complete (discounting impossible spaces)

PP metric OpenMP Kokkos SYCL
Excluding missing data in each model 67.4 76.5 56.0

Supported CPUs only 77.8 74.1 46.0

Supported GPUs only 58.3 80.2 80.7

15

Summary
• SYCL’s future is looking bright:

• Early view of SYCL-2020 shows lots of new HPC-friendly features
• https://www.iwocl.org/iwocl-2020/conference-program/#panel

• Support for NVIDIA GPUs added to open-source version of DPC++
• Critical part of Argonne National Laboratory path to Exascale with Aurora
• Robust support from/for Arm and AMD the next step
• Improvements on Intel CPUs needed to help performance

• OpenMP GPU support growing:
• Improvements to LLVM and GCC
• Support for Intel GPUs available in Intel oneAPI compiler

• Kokkos continues to provide pragmatic isolation from underlying vendor support decisions:
• But must wait for Kokkos team or contributors to provide new backends
• Not open standard so has a high cost of ownership and little shared infrastructure (like LLVM

community)

http://uob-hpc.github.io
http://hpc.tomdeakin.com

https://www.iwocl.org/iwocl-2020/conference-program/

16

• What programming model should I use?
http://uob-hpc.github.io/2020/05/05/choosing-models.html

• Performance Portability across Diverse Computer Architectures
T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa, J. Salmon, P3HPC at SC 2019.
https://doi.org/10.1109/P3HPC49587.2019.00006

• Evaluating the performance of HPC-style SYCL applications
T. Deakin, S. McIntosh-Smith, IWOCL 2019.
https://doi.org/10.1145/3388333.3388643

• Evaluating attainable memory bandwidth of parallel programming models via BabelStream
T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, IJCSE 2018.
https://doi.org/10.1504/IJCSE.2017.10011352

Plus others at uob-hpc.github.io/ and hpc.tomdeakin.com and uob-hpc.github.io/SimonMS/

Twitter: @tjdeakin @simonmcs

http://uob-hpc.github.io
http://hpc.tomdeakin.com

http://uob-hpc.github.io/2020/05/05/choosing-models.html
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1504/IJCSE.2017.10011352
https://uob-hpc.github.io/
https://hpc.tomdeakin.com/
https://uob-hpc.github.io/SimonMS/

